た。 (長島秀雄・高田真人・澤口武) 系殺歯料を取り巻く現状と課題を聞い 系役歯料を取り巻く現状と課題を聞い なぜ新しく認可されたのか、食品製造の

殺新規 菌 対 制 が 物

亜塩

で なることなど、多くの問覧 Eで なることなど、多くの問覧 といい。 製剤は分解・中和が難しく、 Na カ 加一は酸と混和する使用方 ※ が 法が選連で許可されている 地 な が、「単塩素酸加」に対し 下 れていない。理由としては、受 よの調整は希釈の手間や人 地 はに対して有毒な塩素ガス と と、さらにはアルカリ性の か、食品に残留しやすいこ

て認められた「亜塩素酸」 は 日本で初めて化学物質とし 、塩素酸水」とは。 全く異なる殺菌力

四つの塩素系殺菌料

○看香せず殺菌後の製品へ

コープが技術開発した「サイ の現象を利用し安定させる。 の現象を利用し安定させる。 ことに成功したものが「里 というない。 の減少が緩やかで効果が持 に る。 ---「亜塩素酸水」に使用 る、少量で高い殺菌効果3 え、少量で高い殺菌効果3 を「サイクル反応」という

──而期的な殺菌料「亜 を含有する食品添加物である。「亜塩素酸」そのもの

解、消失するが、三慶グルは不安定であり、すぐに分

*亜塩素酸水 * 新規添加物に認可

でにない新時代

の殺菌料

- に変化させ、酸化力を強め ・ 酸性~弱酸性に傾け、殺菌 ・ 成分がそれぞれ「次重塩素 ・ 成分がそれぞれ「次重塩素 ※「次亜塩素酸 kg lや「亜塩素 素酸」と「亜塩素酸」は、 素酸」と「亜塩素酸」は、 のか。 酸Na」を酸性にしたものな

全 米量 条斤 厚用 The Japan Food Journal

殺菌料を取 合田

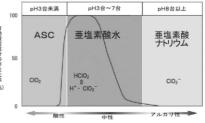
殺菌料は食品中の 一つの「亜塩素酸水」

を 「亜塩素酸水」は次亜塩 ・ 素酸Nの欠点を解消できる ・ 両期的な食品添加物・殺菌 ・ 科だといえる。 である。

に (反応)とは (反応)とは (反応)とは (反応)とは (反応)とは (とんな現象 たる有効成 (重塩 なかの) (重塩 なかい) (できる) (でさる) (で

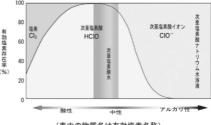
力の低下が著しい弱点がありの低下が著しい弱点がありる。 亜塩素酸水」は、どのよう

合田 それぞれ液性が酸性域に存在しており、低濃 度で高く時間の実を示すという共通点がある。対象 日と使用器度の制限は「次 重塩素酸水」にはないが、 重塩素酸水」は一部制限 がある。程度力は次亜塩素 度くなって、程度力は次亜塩素 度となって、程度力は次亜塩素 な共通点や相違点があるの


無用することはできない(図 効果があるが、繰り返し使 効果があるが、繰り返し使

一方で、「亜塩素酸水

り巻く現状


物やウイルス対策、健康被 物やウイルス対策、健康被 を設内の陰菌など、環境物 に 生の管理病としてや、維持 し、生の管理病としてや、維持 のとして「重塩素酸水」の が入れ用を進めている。

と同等 合田学剛統括代表取締役 pH3台~7台 pH8台以上 亜塩素酸水 亜塩素酸 ナトリウム

(上段は殺菌料名称、下段は有効殺菌成分)

グラフ2 次亜塩素酸NaのpHによる有効塩素の存在比率

(表中の物質名は有効塩素名称)

使用が増えている 要因にもなってい る。 ただしこの二つ ただしこの二つ ただしこの二つ ただしるの二つ ただしるの二つ と殺菌力がすぐさ よ分解されるた め、食品添加物と

塩素酸化物製品

高度さらし粉

● 殺菌料製剤 → 校園村級別ネオクリーン PA S● 可食性除菌洗浄剤

ニューウォッシュフードP スーパーウォッシュ NP (低発泡)

●惣菜用アルコール製剤 ニューエキサイティング 50 AL ウォッシュフード

亜塩素酸水

● 殺菌料

クロラスケア クロラスケアーフォー ● 除菌洗浄剤

ケアーフォーNa 15 ケアーフォーガード オウトゥロックスーパー

次亜塩素酸ナトリウム ● 殺菌料製剤

NEW パワフル・PA

ササエルチカラ

塩素酸化物の総合メーカー「三慶グループ」は これからも、人類が豊かで、かつ近代的で しかも衛生的な生活を維持して行くことができる 環境作りのお手伝いや、食品加工のお手伝いを目標にし 社会貢献を続けて行く企業であり続けたい。

三慶グループ 大阪市中央区城見 2-2-53 大阪東京海上日動ビル 12F お客様サービスセンター 🚾 0120-64-2811 http://www.sankei-group.com/

			- 二米田	食化物の要素 比較対照表		
物質名 分子式		亜塩素酸水		亜塩素酸ナトリウム	次亜塩素酸水	次亜塩素酸ナトリウム
		HGIO ₂		NaCIO ₂	HGI0	NaCIO
有効成分		HCIO2, CIO2", CIO2" in water phase	CIO ₂		Cla HCIO CIO	
化学的性状		中性~酸性	アルカリ性		中性~酸性	アルカリ性
	食品添加物	殺菌料	漂白剂	殺菌料	殺菌料	殺菌料·漂白剂
使用基準	対象食品	精米・豆類・野菜(キノコ類を除く)・果 実・海藻類・群魚介類(製肉を含む)・ 食肉・食肉吸品・鯨肉製品・上記を埋 散・乾燥その他の方法によって保存し たもの		かんきつ類果皮(菓子製造に用いるものに 限る)・生食用野菜類・卵類(卵酸の部分に 限る)・数の子の加工品(干し数の子、冷凍 数の子を除く)	なし	なし
	使用量の最大 限度(衛生6法)	浸漬液または噴霧液1kgにつき0.40g	なし	浸漬液1kgにつき0.50g	なし	なし
	使用制限	最終食品の完成前に分解または除去 しなければならない		最終食品の完成前に分解除去しなければ ならない	ればならない	
	含量	亜塩素酸 (HCIO₂=68.46) を4.0 ~ 6.0 ¥含む	含量70%以上、 Pb:10 _{MS} 以下、 As ₂ O ₃ :1.0mg以下		強酸性次亜塩素酸水一有効塩素 20~60mg/kg pH2.7以下 微酸性次亜塩素酸水一有効塩素 10~30mg/kg pH5.0~6.5 蒸発機留物0.25%以下	有効塩素4.0%以上を含む
	特徵	・食中毒相菌および風飲掘原・ウイル スに対して幅広い殺蓋スペクトルを 有する。 他の塩素系殺爾料に比べて、有機 物の影響を受けにない ・亜塩素酸ナトリウムより短時間の殺 簡に優れている 教質効果を長期間相持できる		・そのままの状態では政菌効果はほとんどない ない。 ・短時間の殺菌力は極めて低い ・最質への影響が少ない	・pHを下げることで促進度で、短 時間殺菌に催れている	・抗菌スペクトルが広く、 まざまな細菌、真菌類 有効 ・アルカリ性のため、高部 での使用 ・次亜塩素酸水に比べる 性が高く、濃度が高い
	リスク	・使用を開が設けられている (対象物と態度)	・残留塩素が残り やすい	・務盟性無が残りやすい ・検索力に預い ・色質の改善がされやすく、品質の顕認が 起きやすい ・危援力を値する方法として、使用時に有 機能を追加し、酸性状態で使用する方法 (ASC)もあるが、一酸化塩素ガメが発生 しやすくなり、機等等の対応が必要となる ・電塩素製ナックムに酸を選加するとい う使用時間繋ができるように申請されたが 総められていない。		
	建康影響評価 (品安全委員会)	あり	ສົ່ງ		あり	なし
備考				亜塩素酸ナトリウムのことを「安定化二酸 化塩素」や「酸性化亜塩素酸ナトリウム」と いう商品名で販売されており、注意が必要 である		酸と混和した上で使用す 使用方法については、道 にて認められている

「重塩素酸水」が認められ

程 リットとデメリットを補完 することによりこれらのメ なることによりこれらのメ 温素素教育料は決して競 と。これが全く新しい ようになった意義は大きい。

に対して使用許可濃度範囲 が設定されてい に対して使用許可濃度範囲

もしてから殺菌処理を行うといる。 を含く、数値処理以外の工 版 を表し、殺値処理以外の工 版 を表して、次分の不十分から殺菌処理を に、次分の不十分から殺菌処理を を表してのが高くな で なることが問題だ。 と、正常変数水と 医氏で

今後は、互いの優れた部分 食中毒効止や、保存性の改 食中毒効止や、保存性の改 を対応にとって、効果的な をした。ころもことである。 な ではないかと考えている。 な ではないかと考えている。 な ではないかと考えている。 と考えている。

本様の商物メーカーが製造 した「白菜後間」で、園管の した「白菜後間」で、園管の した「白菜後間」で、園管の した「白菜後間」で、園管の に関始質しきの仕事が落在して、 でに有る切じしまった。 してご者も切じしまった。 の使们間を紹介する。 が購入し関金する場合が関がない。さらに、消程がない。さらに、消 いる。このことがら、最大 て考えることが一般的だ。 喫棄が大きな原因になって える場合、次のように分け 所で殺菌できる加熱処理工 に、交差汚染の防御。 しかし「浅清」は加工限 を介しての二次汚染、 消費者 2点を考慮して管理 この芸

HACCP対応工程管理が容易 て開発された殺 処理を目的とし

が「亜塩素酸水」 は最も問題とさ 図2 既存塩素系殺菌料の殺菌カイメ

酸化力で除菌や殺菌ができる ※ 有効塩素と遊離塩素は一致している。

図3 亜塩素酸水の殺菌カイメーシ 変わらない殺菌力で除菌や殺菌ができる

CCでは浅濃加工場での 広手段となる。 があれば、他の使用例も紹

「亜塩素酸水」を食品

最大の特徴は使用上限温度

香せが、品質に対する影響 (単塩素酸器度として40 (単塩素酸器度として40

た 盟を車備して作業やの作業合金級はす は では大きのは、一分な総別力を発 の るが、一十分な総別力を発 の などの人間が必要になる。 個 などの提が必要になる。 個 などの提が必要になる。 の などの提が必要になる。 に の などのとがなどがあります。

とを基本に、「次亜塩素酸水」ないとを基本に、「次亜塩素酸水」ない。

原材料の殺菌処理を行う 進剤であるとい 、「亜塩素酸水」で

・ 一使用の配慮とは具体 ・ 一使用の配慮とは具体 合田「次亜塩素酸水 使用の配成とは具体

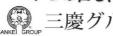
・ 境の中間殺菌に優れている ・ 製品の切り巻え時の製造環 ・ とから次亜塩素酸水は、 用とした後の作業台なら、次 使用時の選度が低く、しか 使用時の選びがなく、しか を水洗の必要がないなどの メリットもある。これでの

は、使用器具類の殺菌には 瞬間的でしかも安定した殺 を「次亜塩素酸Na」

華

亜塩素酸Naの使用拡大取り下げ

一般化塩素を発生させて使い機を加えて、亜塩素酸や、


違う。

型の体制作りが次められるようになった。その中で、 「産塩素酸水」は、後割料である場合では、 関連数目類の破断・洗浄・ 関連数目類の破断・洗浄・ 関連が上が、加工食品の は、「利用の動化にも利用できる。 は、こって人切がスファクター は、こって人切がスファクター のだ。

い

「亜塩素酸水」と「亜塩素酸㎏」の違

いつの世も、常識を打ち破るは、熱意のある新しい発想です

〒540-0001 大阪市中央区城見 2-2-53 大阪東京海上日動ビル 12F お客様サービスセンター 00,0120-64-2811 http://www.sankei-group.com/